반응형

1. BJT교류해석 개요



BJT증폭기의 소신호 교류해석을 하기 위해서는 BJT를 대체하는 교류등가모델을 이용하여 해석해야 한다. BJT의 교류등가모델에는 \(r_{e}\)모델, 하이브리드(hybrid)모델, 하이브리드-\(\pi\)모델(저주파용)이 있다.
 

\(r_{e}\)모델

하이브리드-\(\pi\)모델


중첩의 원리를 이용하여 시스템의 직류, 교류응답을 분리해서 해석한 다음, 다시 합칠 수 있다.

*여기서 전체 순간값을 \(i_{E},\,v_{CE}\), 직류값을 \(I_{E},\,V_{CE}\), 순간교류값을 \(i_{e},\,v_{ce}\), 페이저값을 \(I_{e},\,V_{ce}\)로 나타내겠다.

교류해석을 할 때 직류전원을 제거(전압원은 단락, 전류원은 개방)하고 커패시터는 단락, 인덕터는 개방한다.
*참고: 인덕터는 부피가 크기 때문에 잘 사용되지 않는다.

위의 그림에서 왼쪽 회로는 직류전원과 교류전원이 동시에 있는 BJT회로이고 오른쪽 회로는 교류해석을 위해 직류전원을 제거하고 커패시터를 단락한 회로이다.


위의 그림은 하나의 시스템을 나타낸 것이다. \(V_{i}\)와 \(I_{i}\)는 각각 입력전압과 입력전류이며 \(Z_{i}\)는 입력임피던스로 \(\displaystyle Z_{i}=\frac{V_{i}}{I_{i}}\)이고 이는 테브난 등가임피던스와 같다. \(V_{o}\)와 \(I_{o}\)는 각각 출력전압과 출력전류이고 \(Z_{o}\)는 출력임피던스로 \(\displaystyle Z_{o}=\frac{V_{o}}{I_{o}}\)(\(V_{i}=0\)으로 놓고 구한다)이고 이것 또한 테브난 등가임피던스와 같다. 전압이득을 \(\displaystyle A_{v}=\frac{V_{o}}{V_{i}}\), 전류이득을 \(\displaystyle A_{i}=\frac{I_{o}}{I_{i}}\)로 정의한다.


참고자료:

Electronic Devices and Circuit Theory 11th edition, Boylestad, Nashelsky, Pearson

반응형
Posted by skywalker222