24. Δ(델타)결선
\(V_{L}=|\mathbf{V}_{ab}|=|\mathbf{V}_{bc}|=|\mathbf{V}_{ca}|\) (선전압)
\(V_{p}=|\mathbf{V}_{an}|=|\mathbf{V}_{bn}|=|\mathbf{V}_{cn}|\) (상전압)
\(V_{L}=\sqrt{3}V_{p}\), \(\mathbf{V}_{ab}=\sqrt{3}V_{p}\angle30^{\circ}\)
\(\displaystyle\mathbf{I}_{AB}=\frac{\mathbf{V}_{ab}}{\mathbf{Z}_{p}}\), \(\displaystyle\mathbf{I}_{BC}=\frac{\mathbf{V}_{bc}}{\mathbf{Z}_{p}}\), \(\displaystyle\mathbf{I}_{CA}=\frac{\mathbf{V}}{\mathbf{Z}_{p}}\) (\(\mathbf{Z}_{p}\)는 유도성 임피던스)
3상 전류들의 크기: \(I_{p}=|\mathbf{I}_{AB}|=|\mathbf{I}_{BC}|=|\mathbf{I}_{CA}|\)
선전류의 크기: \(I_{L}=|\mathbf{I}_{aA}|=|\mathbf{I}_{bB}|=|\mathbf{I}_{cC}|\)
\(I_{L}=\sqrt{3}I_{p}\)
\(\Delta\)결선 |
상전압=선전압 |
선전류>상전류 |
Y결선 |
선전압>상전압 |
선전류=상전류 |
Y결선에서 역률각이 \(\theta\)이면 한 상이 흡수하는 전력은 \(\displaystyle P_{p}=V_{p}I_{p}\cos\theta=V_{p}I_{L}\cos\theta=\frac{V_{L}}{\sqrt{3}}I_{L}\cos\theta\)이고 전체 전력은 \(P=3P_{p}=\sqrt{3}V_{p}I_{p}\cos\theta\)이다.
\(\Delta \)결선에서 역률각이 \(\theta\)이면 한 상이 흡수하는 전력은 \(P_{p}=V_{p}I_{p}\cos\theta=V_{L}I_{p}\cos\theta=V_{L}\frac{I_{L}}{\sqrt{3}}\cos\theta\)이고 전체전력은 \(P=3P_{p}=\sqrt{3}V_{p}I_{p}\cos\theta\)이다.
부하 |
상전압 |
선전압 |
상전류 |
선전류 |
Y |
\(\mathbf{V}_{AN}=V_{p}\angle0^{\circ}\) \(\mathbf{V}_{BN}=V_{p}\angle-120^{\circ}\) \(\mathbf{V}_{CN}=V_{p}\angle-240^{\circ}\) |
\(\begin{align*}\mathbf{V}_{AB}&=\mathbf{V}_{ab}=(\sqrt{3}\angle30^{\circ})\mathbf{V}_{AN}\\&=\sqrt{3}V_{p}\angle30^{\circ}\end{align*}\) \(\begin{align*}\mathbf{V}_{BC}&=\mathbf{V}_{bc}=(\sqrt{3}\angle30^{\circ})\mathbf{V}_{BN}\\&=\sqrt{3}V_{p}\angle-90^{\circ}\end{align*}\) \(\begin{align*}\mathbf{V}_{CA}&=\mathbf{V}_{ca}=(\sqrt{3}\angle30^{\circ})\mathbf{V}_{CN}\\&=\sqrt{3}V_{p}\angle-210^{\circ}\end{align*}\) |
\(\displaystyle\mathbf{I}_{aA}=\mathbf{I}_{AN}=\frac{\mathbf{V}_{AN}}{\mathbf{Z}_{p}}\) \(\mathbf{I}_{bB}=\mathbf{I}_{BN}=\frac{\mathbf{V}_{BN}}{\mathbf{Z}_{p}}\) \(\displaystyle\mathbf{I}_{cC}=\mathbf{I}_{CN}=\frac{\mathbf{V}_{CN}}{\mathbf{Z}_{p}}\) |
\(\displaystyle\mathbf{I}_{aA}=\mathbf{I}_{AN}=\frac{\mathbf{V}_{AN}}{\mathbf{Z}_{p}}\) \(\displaystyle\mathbf{I}_{bB}=\mathbf{I}_{BN}=\frac{\mathbf{V}_{BN}}{\mathbf{Z}_{p}}\) \(\displaystyle\mathbf{I}_{cC}=\mathbf{I}_{CN}=\frac{\mathbf{V}_{CN}}{\mathbf{Z}_{p}}\) |
\(\Delta\) |
\(\mathbf{V}_{AB}=\mathbf{V}_{ab}=\sqrt{3}V_{p}\angle30^{\circ}\) \(\mathbf{V}_{BC}=\mathbf{V}_{bc}=\sqrt{3}V_{p}\angle-90^{\circ}\) \(\mathbf{V}_{CA}=\mathbf{V}_{ca}=\sqrt{3}V_{p}\angle-210^{\circ}\) |
\(\mathbf{V}_{AB}=\mathbf{V}_{ab}=\sqrt{3}V_{p}\angle30^{\circ}\) \(\mathbf{V}_{BC}=\mathbf{V}_{bc}=\sqrt{3}V_{p}\angle-90^{\circ}\) \(\mathbf{V}_{CA}=\mathbf{V}_{ca}=\sqrt{3}V_{p}\angle-210^{\circ}\) |
\(\displaystyle\mathbf{I}_{AB}=\frac{\mathbf{V}_{AB}}{\mathbf{Z}_{p}}\) \(\displaystyle\mathbf{I}_{BC}=\frac{\mathbf{V}_{BC}}{\mathbf{Z}_{p}}\) \(\displaystyle\mathbf{I}_{CA}=\frac{\mathbf{V}_{CA}}{\mathbf{Z}_{p}}\) |
\(\displaystyle\mathbf{I}_{aA}=(\sqrt{3}\angle-30^{\circ})\frac{\mathbf{V}_{AB}}{\mathbf{Z}_{p}}\) \(\displaystyle\mathbf{I}_{bB}=(\sqrt{3}\angle-30^{\circ})\frac{\mathbf{V}_{BN}}{\mathbf{Z}_{p}}\) \(\displaystyle\mathbf{I}_{cC}=(\sqrt{3}\angle-30^{\circ})\frac{\mathbf{V}_{CN}}{\mathbf{Z}_{p}}\) |
상당전력: Y부하: \(\sqrt{3}V_{L}I_{L}\cos\theta\), \(\Delta\)부하: \(\sqrt{3}V_{L}I_{L}\cos\theta\) (\(\cos\theta\)는 부하의 역률)
Y결선과 \(\Delta\)결선 사이의 평형 3상 부하의 관계: \(\displaystyle\mathbf{Z}_{Y}=\frac{\mathbf{Z}_{\Delta}}{3}\)
참고자료:
Engineering Circuit Analysis 8th edition, Hayt, Kemmerly, Durbin, McGraw-Hill
'전자공학 > 회로이론' 카테고리의 다른 글
26. 상호 인덕턴스 (0) | 2017.09.18 |
---|---|
25. 3상 시스템에서의 전력측정 (0) | 2017.09.17 |
23. 3상 Y-Y결선 (0) | 2017.09.15 |
22. 다상 시스템 (0) | 2017.09.14 |
21. 복소전력 (0) | 2017.09.13 |